- ASIC
- Battery management ICs
- Clocks and timing solutions
- ESD and surge protection devices
- Ethernet
- Evaluation Boards
- High reliability
- Isolation
- Memories
- Microcontroller
- Power
- RF
- Security and smart card solutions
- Sensor technology
- Small signal transistors and diodes
- Transceivers
- Universal Serial Bus (USB)
- Wireless connectivity
- Search Tools
- Technology
- Packages
- Product Information
- Where to Buy
- Overview
- Defense
- High-reliability custom services
- New space
- Space
- Overview
- Embedded flash IP solutions
- Flash+RAM MCP solutions
- F-RAM (Ferroelectric RAM)
- NOR flash
- nvSRAM (non-volatile SRAM)
- PSRAM (Pseudostatic RAM)
- Radiation hardened and high-reliability memories
- RRAM Resistive Ram
- SRAM (static RAM)
- Wafer and die memory solutions
- Overview
- 32-bit FM Arm? Cortex? Microcontroller
- 32-bit AURIX? TriCore? microcontroller
- 32-bit PSOC? Arm? Cortex? microcontroller
- 32-bit TRAVEO? T2G Arm? Cortex? microcontroller
- 32-bit XMC? industrial microcontroller Arm? Cortex?-M
- Legacy microcontroller
- MOTIX? MCU | 32-bit motor control SoC based on Arm? Cortex?-M
- Sensing controllers
- Overview
- AC-DC power conversion
- Automotive conventional powertrain ICs
- Class D audio amplifier ICs
- Contactless power and sensing ICs
- DC-DC converters
- Diodes and thyristors (Si/SiC)
- Gallium nitride (GaN)
- Gate driver ICs
- IGBTs ¨C Insulated gate bipolar transistors
- Intelligent power modules (IPM)
- LED driver ICs
- Motor control ICs
- Power MOSFETs
- Power modules
- Power supply ICs
- Silicon carbide (SiC)
- Smart power switches
- Solid state relays
- Wireless charging ICs
- Overview
- Antenna cross switches
- Antenna tuners
- Bias and control
- Coupler
- Driver amplifiers
- High Reliability Discrete
- Low noise amplifiers (LNAs)
- RF diode
- RF switches
- RF transistors
- Wireless control receiver
- Overview
- Calypso? products
- CIPURSE? products
- Contactless memories
- OPTIGA? embedded security solutions
- SECORA? security solutions
- Security controllers
- Smart card modules
- Smart solutions for government ID
- Overview
- ToF 3D image sensors
- Current sensors
- Gas sensors
- Inductive position sensors
- MEMS microphones
- Pressure sensors
- Radar sensors
- Magnetic position sensors
- Magnetic speed sensors
- Overview
- Bipolar transistors
- Diodes
- Small signal/small power MOSFET
- Overview
- Automotive transceivers
- Control communication
- Powerline communications
- Overview
- USB 2.0 peripheral controllers
- USB 3.2 peripheral controllers
- USB hub controllers
- USB PD high-voltage microcontrollers
- USB-C AC-DC and DC-DC charging solutions
- USB-C charging port controllers
- USB-C Power Delivery controllers
- Overview
- AIROC? Automotive wireless
- AIROC? Bluetooth? and multiprotocol
- AIROC? connected MCU
- AIROC? Wi-Fi + Bluetooth? combos
- Overview
- Commercial off-the-shelf (COTs) memory portfolio
- Defense memory portfolio
- High-reliability power conversion and management
- Overview
- Rad hard microwave and RF
- Radiation hardened power
- Space memory portfolio
- Overview
- Parallel NOR flash
- SEMPER? NOR flash family
- SEMPER? X1 LPDDR flash
- Serial NOR flash
- Overview
- FM0+ 32-bit Arm? Cortex?-M0+ microcontroller (MCU) families
-
FM3 32-bit Arm? Cortex?-M3 microcontroller (MCU) families
- Overview
- FM3 CY9AFx1xK series Arm? Cortex?-M3 microcontroller (MCU)
- FM3 CY9AFx1xL/M/N series Arm? Cortex?-M3 microcontroller (MCU)
- FM3 CY9AFx2xK/L series Arm? Cortex?-M3 microcontroller (MCU)
- FM3 CY9AFx3xK/L series ultra-low leak Arm? Cortex?-M3 microcontroller (MCU)
- FM3 CY9AFx4xL/M/N series low power Arm? Cortex?-M3 microcontroller (MCU)
- FM3 CY9AFx5xM/N/R series low power Arm? Cortex?-M3 microcontroller (MCU)
- FM3 CY9AFxAxL/M/N series ultra-low leak Arm? Cortex?-M3 microcontroller (MCU)
- FM3 CY9BFx1xN/R high-performance series Arm? Cortex?-M3 microcontroller (MCU)
- FM3 CY9BFx1xS/T high-performance series Arm? Cortex?-M3 microcontroller (MCU)
- FM3 CY9BFx2xJ series Arm? Cortex?-M3 microcontroller (MCU)
- FM3 CY9BFx2xK/L/M series Arm? Cortex?-M3 microcontroller (MCU)
- FM3 CY9BFx2xS/T series Arm? Cortex?-M3 microcontroller (MCU)
-
FM4 32-bit Arm? Cortex?-M4 microcontroller (MCU) families
- Overview
- FM4 CY9BFx6xK/L high-performance series Arm? Cortex?-M4F microcontroller (MCU)
- FM4 CY9BFx6xM/N/R high-performance series Arm? Cortex?-M4F microcontroller (MCU)
- FM4 S6E2C high-performance series Arm? Cortex?-M4F microcontroller (MCU)
- FM4 S6E2G series connectivity Arm? Cortex?-M4F microcontroller (MCU)
- FM4 S6E2H high-performance series Arm? Cortex?-M4F microcontroller (MCU)
- Overview
-
32-bit TriCore? AURIX? ¨C TC2xx
- Overview
- AURIX? family ¨C TC21xL
- AURIX? family ¨C TC21xSC (wireless charging)
- AURIX? family ¨C TC22xL
- AURIX? family ¨C TC23xL
- AURIX? family ¨C TC23xLA (ADAS)
- AURIX? family ¨C TC23xLX
- AURIX? family ¨C TC264DA (ADAS)
- AURIX? family ¨C TC26xD
- AURIX? family ¨C TC27xT
- AURIX? family ¨C TC297TA (ADAS)
- AURIX? family ¨C TC29xT
- AURIX? family ¨C TC29xTT (ADAS)
- AURIX? family ¨C TC29xTX
- AURIX? TC2x emulation devices
-
32-bit TriCore? AURIX? ¨C TC3xx
- Overview
- AURIX? family - TC32xLP
- AURIX? family ¨C TC33xDA
- AURIX? family - TC33xLP
- AURIX? family ¨C TC35xTA (ADAS)
- AURIX? family ¨C TC36xDP
- AURIX? family ¨C TC37xTP
- AURIX? family ¨C TC37xTX
- AURIX? family ¨C TC38xQP
- AURIX? family ¨C TC39xXA (ADAS)
- AURIX? family ¨C TC39xXX
- AURIX? family ¨C TC3Ex
- AURIX? TC37xTE (emulation devices)
- AURIX? TC39xXE (emulation devices)
- 32-bit TriCore? AURIX? ¨C TC4x
- Overview
- PSOC? 4 Arm? Cortex?-M0/M0+
- PSOC? 4 HV Arm? Cortex?-M0+
- PSOC? 5 LP Arm? Cortex?-M3
- PSOC? 6 Arm? Cortex?-M4/M0+
- PSOC? Multitouch Arm? Cortex?-M0
- PSOC? Control Arm? Cortex?-M33
- PSOC? Fingerprint Arm? Cortex?-M0+
- PSOC? Automotive 4: Arm? Cortex?-M0/M0+
- PSOC? Edge Arm? Cortex? M55/M33
- Overview
- 32-bit TRAVEO? T2G Arm? Cortex? for body
- 32-bit TRAVEO? T2G Arm? Cortex? for cluster
- Overview
- Legacy 32-bit MCU
- Legacy 8-bit/16-bit microcontroller
- Other legacy MCUs
- Overview
- AC-DC integrated power stage - CoolSET?
- AC-DC PWM-PFC controller
- Overview
- Bridge rectifiers & AC switches
- CoolSiC? Schottky diodes
- Diode bare dies
- Silicon diodes
- Thyristor / Diode Power Modules
- Thyristor soft starter modules
- Thyristor/diode discs
- Overview
- Automotive gate driver ICs
- Isolated Gate Driver ICs
- Level-Shift Gate Driver ICs
- Low-Side Drivers
- Transformer Driver ICs
- Overview
- AC-DC LED driver ICs
- Ballast IC
- DC-DC LED driver IC
- LED dimming interface IC
- Linear LED driver IC
- LITIX? - Automotive LED Driver IC
- NFC wireless configuration IC with PWM output
- VCSEL driver
- Overview
- 32-bit PSOC? Control Arm? Cortex?-M33 MCU
- iMOTION? Integrated motor control solutions
- MOTIX? MCU | 32-bit motor control SoC based on Arm? Cortex?-M
- MOTIX? motor control ICs for BLDC motors
- MOTIX? motor control ICs for brushed DC motors
- MOTIX? multi half-bridge ICs for servo and stepper motors
- Overview
- Automotive MOSFET
- Dual MOSFETs
- MOSFET (Si & SiC) Modules
- N-channel depletion mode MOSFET
- N-channel power MOSFETs
- P-channel power MOSFETs
- Silicon carbide CoolSiC? MOSFETs
- Small signal/small power MOSFET
- Overview
- Automotive transceivers
- OPTIREG? linear ?voltage regulators (LDO)
- OPTIREG? PMIC
- OPTIREG? switcher
- OPTIREG? System Basis Chips (SBC)
- Overview
-
High-side switches
- Overview
- Classic PROFET? 12V | Automotive smart high-side switch
- Classic PROFET? 24V | Automotive smart high-side switch
- Power PROFET? + 12/24/48V | Automotive smart high-side switch
- PROFET? + 12V | Automotive smart high-side switch
- PROFET? + 24V | Automotive smart high-side switch
- PROFET? +2 12V | Automotive smart high-side switch
- PROFET? Industrial | Smart high-side switch
- PROFET? Load Guard 12V | Automotive smart high-side switch
- PROFET? Wire Guard 12V | Automotive smart high-side switch
- Low-side switches
- Multichannel SPI Switches & Controller
- Overview
- Radar sensors for automotive
- Radar sensors for IoT
- Overview
- EZ-USB? CX3 MIPI CSI2 to USB 3.0 camera controller
- EZ-USB? FX10 & FX5N USB 10Gbps peripheral controller
- EZ-USB? FX20 USB 20 Gbps peripheral controller
- EZ-USB? FX3 USB 5 Gbps peripheral controller
- EZ-USB? FX3S USB 5 Gbps peripheral controller with storage interface
- EZ-USB? FX5 USB 5 Gbps peripheral controller
- EZ-USB? SD3 USB 5 Gbps storage controller
- EZ-USB? SX3 FIFO to USB 5 Gbps peripheral controller
- Overview
- EZ-PD? CCG3 USB type-C port controller PD
- EZ-PD? CCG3PA USB-C and PD
- EZ-PD? CCG3PA-NFET USB-C PD controller
- EZ-PD? CCG7x consumer USB-C Power Delivery & DC-DC controller
- EZ-PD? PAG1: power adapter generation 1
- EZ-PD? PAG2: Power Adapter Generation 2
- EZ-PD? PAG2-PD USB-C PD Controller
- Overview
- EZ-PD? ACG1F one-port USB-C controller
- EZ-PD? CCG2 USB Type-C port controller
- EZ-PD? CCG3PA Automotive USB-C and Power Delivery controller
- EZ-PD? CCG4 two-port USB-C and PD
- EZ-PD? CCG5 dual-port and CCG5C single-port USB-C PD controllers
- EZ-PD? CCG6 one-port USB-C & PD controller
- EZ-PD? CCG6_CFP and EZ-PD? CCG8_CFP Dual-Single-Port USB-C PD
- EZ-PD? CCG6DF dual-port and CCG6SF single-port USB-C PD controllers
- EZ-PD? CCG7D Automotive dual-port USB-C PD + DC-DC controller
- EZ-PD? CCG7S Automotive single-port USB-C PD solution with a DC-DC controller
- EZ-PD? CCG7SAF Automotive Single-port USB-C PD + DC-DC Controller + FETs
- EZ-PD? CCG8 dual-single-port USB-C PD
- EZ-PD? CMG1 USB-C EMCA controller
- EZ-PD? CMG2 USB-C EMCA controller with EPR
- LATEST IN
- Aerospace and defense
- Automotive
- Consumer electronics
- Health and?lifestyle
- Home appliances
- Industrial
- Information and Communication Technology
- Renewables
- Robotics
- Security solutions
- Smart home and building
- Solutions
- Overview
- Defense applications
- Space applications
- Overview
- 48 V systems for EVs & mild hybrids
- ADAS & autonomous driving
- Automotive body electronics & power distribution
- Automotive LED lighting systems
- Chassis control & safety
- Electric vehicle drivetrain system
- EV thermal management system
- Internal combustion drivetrain systems
- In-vehicle infotainment & HMI
- Light electric vehicle solutions
- Overview
- Adapters and chargers
- Complete system solutions for smart TVs
- Mobile device and smartphone solutions
- Multicopters and drones
- Power tools
- Semiconductor solutions for home entertainment applications
- Smart conference systems
- Overview
- Adapters and chargers
- Asset Tracking
- Battery formation and testing
- Battery energy storage (BESS)
- EV charging
- High-voltage solid-state power distribution
- Industrial automation
- Industrial motor drives and controls
- Industrial robots system solutions for Industry 4.0
- LED lighting system design
- Light electric vehicle solutions
- Power tools
- Power transmission and distribution
- Traction
- Uninterruptible power supplies (UPS)
- Overview
- Data center and AI data center solutions
- Edge computing
- Telecommunications infrastructure
- Overview
- Battery formation and testing
- EV charging
- Hydrogen
- Photovoltaic
- Wind power
- Solid-state circuit breaker
- Overview
- Device authentication and brand protection
- Embedded security for the Internet of Things (IoT)
- eSIM applications
- Government identification
- Mobile security
- Payment solutions
- Access control and ticketing
- Overview
- Domestic robots
- Heating ventilation and air conditioning (HVAC)
- Home and building automation
- PC accessories
- Semiconductor solutions for home entertainment applications
- Overview
- Battery management systems (BMS)
- Connectivity
- Human Machine Interface
- Machine Learning Edge AI
- Motor control and drives
- Power conversion
- Security
- Sensor solutions
- System diagnostics and analytics
- Overview
- Automotive auxiliary systems
- Automotive gateway
- Automotive power distribution
- Body control modules (BCM)
- Comfort & convenience electronics
- Zonal DC-DC converter 48 V-12 V
- Zone control unit
- Overview
- Automotive animated LED lighting system
- Automotive LED front single light functions
- Automotive LED rear single light functions
- Full LED headlight system - multi-channel LED driver
- LED drivers (electric two- & three-wheelers)
- LED pixel light?controller - supply & communication
- Static interior ambient LED light
- Overview
- Active suspension control
- Airbag system
- Automotive braking solutions
- Automotive steering solutions
- Chassis domain control
- Reversible seatbelt pretensioner
- Overview
-
Automotive BMS
- Overview
- Automotive battery cell monitoring & balancing
- Automotive battery control unit (BCU)
- Automotive battery isolated communication
- Automotive battery management system (BMS) - 12 V to 24 V
- Automotive battery management system (BMS) - 48 V
- Automotive battery management system (BMS) - high-voltage
- Automotive battery pack monitoring
- Automotive battery passport & event logging
- Automotive battery protection & disconnection
- Automotive current sensing & coulomb counting
- BMS (electric two- & three-wheelers)
- EV charging
- EV inverters
- EV power conversion & OBC
- FCEV powertrain system
- Overview
- Automatic transmission hydraulic system
- Belt starter generator 48 V ¨C inverter ISG
- Diesel direct injection
- Double-clutch transmission electrical control
- Double-clutch transmission hydraulic control
- Gasoline direct injection
- Multi-port fuel injection
- Small 1-cylinder combustion engine solution
- Small engine starter kit
- Transfer case brushed DC
- Transfer case brushless DC (BLDC)
- Overview
- Automotive head unit
- Automotive USB-C power & data solution
- Automotive?instrument cluster
- Automotive?telematics control unit?(TCU)
- Center information display (CID)
- High-performance cockpit controller
- In-cabin wireless charging
- Smart instrument cluster (electric two- & three-wheelers)
- Overview
- E-bike solutions
- Two- & three-wheeler solutions
- Overview
- Audio amplifier solutions
- Complete system solutions for smart TVs
- Distribution audio amplifier unit solutions
- Home theater installation speaker system solutions
- Party speaker solutions
- PoE audio amplifier unit solutions
- Portable speaker solutions
- Powered active speaker systems
- Remote control
- Smart speaker designs
- Soundbar solutions
- Overview
- Data center and AI data center solutions
- Digital input/output (I/O) modules
- DIN rail power supply solutions
- Home and building automation
- Industrial HMI Monitors and Panels
- Industrial motor drives and controls
- Industrial PC
- Industrial robots system solutions for Industry 4.0
- Industrial sensors
- Machine vision
- Mobile robots (AGV, AMR)
- Programmable logic controller (PLC)
- Solid-state circuit breaker
- Uninterruptible power supplies (UPS)
- Overview
- 48 V intermediate bus converter (IBC)
- AI accelerator cards
- AMD server CPUs
- Ampere CPUs
- FPGAs in datacenter applications
- Intel server CPUs
- Networking and switch platforms
- Power path protection
- Power system reliability modeling
- RAID storage
- Server battery backup units (BBU)
- Server power supply
- SmartNIC cards
- Overview
- AC-DC power conversion for telecommunications infrastructure
- DC-DC power conversion for telecommunications infrastructure
- FPGA in wired and wireless telecommunications applications
- Satellite communications
- Power system reliability modeling
- RF front end components for telecommunications infrastructure
- Overview
-
AC-DC power conversion
- Overview
- AC-DC auxiliary power supplies
- AC-DC power conversion for telecommunications infrastructure
- Adapters and chargers
- Automotive LED lighting systems
- Complete system solutions for smart TVs
- Desktop power supplies
- EV charging
- Industrial power supplies
- PoE power sourcing equipment (PSE)
- Server power supply units (PSU)
- Uninterruptible power supplies (UPS)
- DC-DC power conversion
- Overview
- Power supply health monitoring
- LATEST IN
- Digital documentation
- Evaluation boards
- Finder & selection tools
- Platforms
- Services
- Simulation & Modeling
- Software
- Tools
- Partners
- Infineon for Makers
- University Alliance Program
- Overview
- Bipolar Discs Finder
- Bipolar Module Finder
- Connected Secure Systems Finder
- Diode Rectifier Finder
- ESD Protection Finder
- Evaluation Board Finder
- Gate Driver Finder
- IGBT Discrete Finder
- IGBT Module Finder
- IPM Finder
- Microcontroller Finder
- MOSFET Finder
- PMIC Finder
- Product Finder
- PSOC? and FMx MCU Board & Kit Finder
- Radar Finder
- Reference Design Finder
- Simulation Model Finder
- Smart Power Switch Finder
- Transceiver Finder
- Voltage Regulator Finder
- Wireless Connectivity Board & Kit Finder
- Overview
- AIROC? software & tools
- AURIX? software & tools
- Drive Core for automotive software development
- iMOTION? software & tools
- Infineon Smart Power Switches & Gate Driver Tool Suite
- MOTIX? software & tools
- OPTIGA? software & tools
- PSOC? software & tools
- TRAVEO? software & tools
- XENSIV? software & tools
- XMC? software & tools
- Overview
- CoolGaN? Simulation Tool (PLECS)
- HiRel Fit Rate Tool
- Infineon Designer
- IPOSIM Online Power Simulation Platform
- InfineonSpice Offline Simulation Tool
- OPTIREG? automotive power supply ICs Simulation Tool (PLECS)
- Power MOSFET Simulation Models
- PowerEsim Switch Mode Power Supply Design Tool
- Solution Finder
- XENSIV? Magnetic Sensor Simulation Tool
- Overview
- AURIX? certifications
- AURIX? development tools
-
AURIX? Embedded Software
- Overview
- AURIX? Applications software
- AURIX? Artificial Intelligence
- AURIX? Gateway
- AURIX? iLLD Drivers
- Infineon safety
- AURIX? Security
- AURIX? TC3xx Motor Control Application Kit
- AURIX? TC4x SW application architecture
- Infineon AUTOSAR
- Communication and Connectivity
- Middleware
- Non AUTOSAR OS/RTOS
- OTA
- AURIX? Microcontroller Kits
- Overview
- TRAVEO? Development Tools
- TRAVEO? Embedded Software
- Overview
- XENSIV? Development Tools
- XENSIV? Embedded Software
- XENSIV? evaluation boards
- Overview
- CAPSENSE? Controllers Code Examples
- Memories for Embedded Systems Code Examples
- PSOC? 1 Code Examples for PSOC? Designer
- PSOC? 3 Code Examples for PSOC? Creator
- PSOC? 3/4/5 Code Examples
- PSOC? 4 Code Examples for PSOC? Creator
- PSOC? 6 Code Examples for PSOC? Creator
- PSOC? 63 Code Examples
- USB Controllers Code Examples
- Overview
- DEEPCRAFT? AI Hub
- DEEPCRAFT? Audio Enhancement
- DEEPCRAFT? Model Converter
-
DEEPCRAFT? Ready Models
- Overview
- DEEPCRAFT? Ready Model for Baby Cry Detection
- DEEPCRAFT? Ready Model for Cough Detection
- DEEPCRAFT? Ready Model for Direction of Arrival (Sound)
- DEEPCRAFT? Ready Model for Factory Alarm Detection
- DEEPCRAFT? Ready Model for Fall Detection
- DEEPCRAFT? Ready Model for Gesture Classification
- DEEPCRAFT? Ready Model for Siren Detection
- DEEPCRAFT? Ready Model for Snore Detection
- DEEPCRAFT? Studio
- DEEPCRAFT? Voice Assistant
- Overview
- AIROC? Wi-Fi & Bluetooth EZ-Serial Module Firmware Platform
- AIROC? Wi-Fi & Bluetooth Linux and Android Drivers
- emWin Graphics Library and GUI for PSOC?
- Infineon Complex Device Driver for Battery Management Systems
- Memory Solutions Hub
- PSOC? 6 Peripheral Driver Library (PDL) for PSOC? Creator
- USB Controllers EZ-USB? GX3 Software and Drivers
- Overview
- CAPSENSE? Controllers Configuration Tools EZ-Click
- DC-DC Integrated POL Voltage Regulators Configuration Tool ¨C PowIRCenter
- EZ-USB? SX3 Configuration Utility
- FM+ Configuration Tools
- FMx Configuration Tools
- Tranceiver IC Configuration Tool
- USB EZ-PD? Configuration Utility
- USB EZ-PD? Dock Configuration Utility
- USB EZ-USB? HX3C Blaster Plus Configuration Utility
- USB UART Config Utility
- XENSIV? Tire Pressure Sensor Programming
- Overview
- EZ-PD? CCGx Dock Software Development Kit
-
FMx Softune IDE
- Overview
- RealOS? Real-Time Operating System
- Softune IDE Language tools
- Softune Workbench
- Tool Lineup for F2MC-16 Family SOFTUNE V3
- Tool Lineup for F2MC-8FX Family SOFTUNE V3
- Tool Lineup for FR Family SOFTUNE V6
- Virtual Starter Kit
- Windows 10 operation of released SOFTUNE product
- Windows 7 operation of released SOFTUNE product
- Windows 8 operation of released SOFTUNE product
- ModusToolbox? Software
- PSOC? Creator Software
- Radar Development Kit
- RUST
- USB Controllers SDK
- Wireless Connectivity Bluetooth Mesh Helper Applications
- XMC? DAVE? Software
- Overview
- AIROC? Bluetooth? Connect App Archive
- Cypress? Programmer Archive
- EZ-PD? CCGx Power Software Development Kit Archive
- ModusToolbox? Software Archive
- PSOC? Creator Archive
- PSOC? Designer Archive
- PSOC? Programmer Archive
- USB EZ-PD? Configuration Utility Archives
- USB EZ-PD? Host SDK Archives
- USB EZ-USB? FX3 Archive
- USB EZ-USB? HX3PD Configuration Utility Archive
- WICED? Smart SDK Archive
- WICED? Studio Archive
- Overview
- Infineon Developer Center Launcher
- Infineon Register Viewer
- Pin and Code Wizard
- Timing Solutions
- Wireless Connectivity
- LATEST IN
- Support
- Training
- Developer Community
- News
Business & Financial Press
Oct 16, 2025
Business & Financial Press
Oct 15, 2025
Business & Financial Press
Oct 13, 2025
Business & Financial Press
Sep 25, 2025
- Company
- Our stories
- Events
- Press
- Investor
- Careers
- Quality
- Latest news
Business & Financial Press
Oct 16, 2025
Business & Financial Press
Oct 15, 2025
Business & Financial Press
Oct 13, 2025
Business & Financial Press
Sep 25, 2025
Battery formation and testing
Infineon's semiconductor solutions overcome every challenge and make battery formation and testing equipment even more accurate and efficient

-
On this page
Overview
The battery formation and testing process, which is part of overall battery production, relies on special equipment to charge and discharge a battery. The process demands a high degree of voltage and current accuracy to ensure that the battery lasts for the indicated lifetime. Infineon offers a wide portfolio of semiconductor solutions to be used in this process, helping you to deliver high voltage, high current accuracy, and enable energy recycling.
Benefits
- Higher power density
- Greater efficiency
- Extremely accurate current
- Higher current rating size
- Improved system reliability
- Lower system cost
Block diagram
About
Global demand for batteries is rising due to an increase in battery-powered applications, in particular electric vehicles (EVs). But before a battery can be fitted in an EV, it must be formatted and tested. Battery formation is currently the main bottleneck in the battery manufacturing process. The charge cycles that activate the material in a newly assembled battery cell can take up to 20 hours. Battery cells are then tested for their capacities and quality through controlled charging and discharging cycles. Only after testing batteries can be assembled into modules and packs, and finally can be deemed market-ready. But the process is essential as it greatly impacts a battery¡¯s life, quality, and cost. Every newly produced battery is subject to the formation process before it is introduced into a system. Battery formation equipment utilizing the right AC-DC and DC-DC stages, is required to carry out these key steps.
Infineon's semiconductor solutions, reference designs, evaluation boards, and development and simulation tools enable you to save precious time.
Battery cells size and capacity have increased, and most battery equipment manufacturers expect the supplier to suggest a suitable power system solution.
Ideally, it:
? Enables higher control over voltage and current, and accuracy of up to 0.01 percent.
? Provides thermal management for higher current rating requirements.
? Increases the overall power density with a higher current rating size.
? Improves the reliability of a system solution that operates up to 24 hours a day, 7 days a week.
In general, manufacturers seek a quality formation or testing system solution that is not over-engineered. It should have an attractive cost-performance ratio, yet be reliable and stable to facilitate continuous operation under the given conditions. With space at a premium, high power density is an excellent, often preferred way to decrease the solution¡¯s size. Opting for a standard platform that can be scaled to fit a wide range of requirements enables a manufacturer to enjoy fast time to market.
?
Due to the rapid development of the battery industry, we are currently assissting to new ways to reduce energy consumption, pursue energy saving and improve product consistency. At Infineon, we have a solid understanding of the battery formation market and are able to provide full-spectrum system solutions, from the AC grid to the battery, that require a highly efficient PFC stage and isolated DC-DC stage. Totem pole PFC converter and bi-directional DC-DC converters offer great design flexibility, allowing to meet varying customer requirements. Particularly noteworthy: for non-isolated DC-DC buck-boost stages, Infineon¡¯s comprehensive portfolio of surface mounted devices (SMD) is ideal for those prioritizing a lower BOM and higher power density. For the highest efficiency, Infineon's latest WBG technologies portfolios (SiC and GaN) enable improved thermal performance, reduced power losses, lower system costs and highest power density solutions in both ACDC and DCDC application stage.
Explore our system solutions to get started on your battery formation power system designs.
"Battery testing systems, or battery cyclers, are rack systems by which batteries are tested for their capacities and quality through controlled charging and discharging cycles. As there is no ¡°one-size-fits-all¡± solution when it comes to battery design, battery cyclers play a pivotal role in helping to characterize different batteries, analyzing their function, and providing key data to further improve them or test their quality. Doing so provides a vital instrument for research into rechargeable batteries. With battery cyclers, the scope of battery testing goes beyond the battery production factory, being employed also by ATV and ESS companies, universities, battery/material labs, and second life batteries operators. From single-channel units to multi-channel systems, due to the large size and high capacity of battery modules and packs, battery cyclers have high power ratings compared to battery cell formation systems ¨C up to hundreds kW per channel or more, and are designed to handle higher voltage output ranges.
Infineon's wide range of discrete and module solutions enable you to achieve high accuracy, highly efficient designs with higher power density to reduce cabinet size."
?
Battery cyclers enable the global Battery Circular Economy, as different measurement technologies address all stages of battery testing. As a company dedicated to decarbonization, Infineon proudly support this technology.
Retired EV batteries retain almost 80% of their original capacity. Though no longer useful for traction, these battery packs can perfectly serve other energy storage applications. For example, when EV battery packs are dismantled, the battery cells obtained are tested for determining their fitness for second-life applications. Cells with similar characteristics are classified to have a homogenous cell-selection for each second-life battery pack, while those that are not suitable for repurposing are sent to specialized recycling facilities and recycled. In this way, EVs, and Energy Storage utilization is maximised throughout the whole battery life cycle, while resource usage is optimized through recycled materials.
?
Global demand for batteries is rising due to an increase in battery-powered applications, in particular electric vehicles (EVs). But before a battery can be fitted in an EV, it must be formatted and tested. Battery formation is currently the main bottleneck in the battery manufacturing process. The charge cycles that activate the material in a newly assembled battery cell can take up to 20 hours. Battery cells are then tested for their capacities and quality through controlled charging and discharging cycles. Only after testing batteries can be assembled into modules and packs, and finally can be deemed market-ready. But the process is essential as it greatly impacts a battery¡¯s life, quality, and cost. Every newly produced battery is subject to the formation process before it is introduced into a system. Battery formation equipment utilizing the right AC-DC and DC-DC stages, is required to carry out these key steps.
Infineon's semiconductor solutions, reference designs, evaluation boards, and development and simulation tools enable you to save precious time.
Battery cells size and capacity have increased, and most battery equipment manufacturers expect the supplier to suggest a suitable power system solution.
Ideally, it:
? Enables higher control over voltage and current, and accuracy of up to 0.01 percent.
? Provides thermal management for higher current rating requirements.
? Increases the overall power density with a higher current rating size.
? Improves the reliability of a system solution that operates up to 24 hours a day, 7 days a week.
In general, manufacturers seek a quality formation or testing system solution that is not over-engineered. It should have an attractive cost-performance ratio, yet be reliable and stable to facilitate continuous operation under the given conditions. With space at a premium, high power density is an excellent, often preferred way to decrease the solution¡¯s size. Opting for a standard platform that can be scaled to fit a wide range of requirements enables a manufacturer to enjoy fast time to market.
?
Due to the rapid development of the battery industry, we are currently assissting to new ways to reduce energy consumption, pursue energy saving and improve product consistency. At Infineon, we have a solid understanding of the battery formation market and are able to provide full-spectrum system solutions, from the AC grid to the battery, that require a highly efficient PFC stage and isolated DC-DC stage. Totem pole PFC converter and bi-directional DC-DC converters offer great design flexibility, allowing to meet varying customer requirements. Particularly noteworthy: for non-isolated DC-DC buck-boost stages, Infineon¡¯s comprehensive portfolio of surface mounted devices (SMD) is ideal for those prioritizing a lower BOM and higher power density. For the highest efficiency, Infineon's latest WBG technologies portfolios (SiC and GaN) enable improved thermal performance, reduced power losses, lower system costs and highest power density solutions in both ACDC and DCDC application stage.
Explore our system solutions to get started on your battery formation power system designs.
"Battery testing systems, or battery cyclers, are rack systems by which batteries are tested for their capacities and quality through controlled charging and discharging cycles. As there is no ¡°one-size-fits-all¡± solution when it comes to battery design, battery cyclers play a pivotal role in helping to characterize different batteries, analyzing their function, and providing key data to further improve them or test their quality. Doing so provides a vital instrument for research into rechargeable batteries. With battery cyclers, the scope of battery testing goes beyond the battery production factory, being employed also by ATV and ESS companies, universities, battery/material labs, and second life batteries operators. From single-channel units to multi-channel systems, due to the large size and high capacity of battery modules and packs, battery cyclers have high power ratings compared to battery cell formation systems ¨C up to hundreds kW per channel or more, and are designed to handle higher voltage output ranges.
Infineon's wide range of discrete and module solutions enable you to achieve high accuracy, highly efficient designs with higher power density to reduce cabinet size."
?
Battery cyclers enable the global Battery Circular Economy, as different measurement technologies address all stages of battery testing. As a company dedicated to decarbonization, Infineon proudly support this technology.
Retired EV batteries retain almost 80% of their original capacity. Though no longer useful for traction, these battery packs can perfectly serve other energy storage applications. For example, when EV battery packs are dismantled, the battery cells obtained are tested for determining their fitness for second-life applications. Cells with similar characteristics are classified to have a homogenous cell-selection for each second-life battery pack, while those that are not suitable for repurposing are sent to specialized recycling facilities and recycled. In this way, EVs, and Energy Storage utilization is maximised throughout the whole battery life cycle, while resource usage is optimized through recycled materials.
?